Carbon Leaching from Tropical Peat Soils and Consequences for Carbon Balances

نویسندگان

  • Tim Rixen
  • Antje Baum
  • Francisca Wit
  • Joko Samiaji
چکیده

Drainage and deforestation turned Southeast (SE) Asian peat soils into a globally important CO2 source, because both processes accelerate peat decomposition. Carbon losses through soil leaching have so far not been quantified and the underlying processes have hardly been studied. In this study, we use results derived from nine expeditions to six Sumatran rivers and a mixing model to determine leaching processes in tropical peat soils, which are heavily disturbed by drainage and deforestation. Here we show that a reduced evapotranspiration and the resulting increased freshwater discharge in addition to the supply of labile leaf litter produced by re-growing secondary forests increase leaching of carbon by ∼200%. Enhanced freshwater fluxes and leaching of labile leaf litter from secondary vegetation appear to contribute 38 and 62% to the total increase, respectively. Decomposition of leached labile DOC can lead to hypoxic conditions in rivers draining disturbed peatlands. Leaching of the more refractory DOC from peat is an irrecoverable loss of soil that threatens the stability of peat-fringed coasts in SE Asia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size and XAD fractionations of trihalomethane precursors from soils.

Soil organic matter is an important source of allochthonous dissolved organic matter inputs to the Sacramento-San Joaquin Delta waterways, which is a drinking water source for 22 million people in California, USA. Knowledge of trihalomethane (THM) formation potential of soil-derived organic carbon is important for developing effective strategies for organic carbon removal in drinking water trea...

متن کامل

Tropical wetlands: A missing link in the global carbon cycle?

Tropical wetlands are not included in Earth system models, despite being an important source of methane (CH4) and contributing a large fraction of carbon dioxide (CO2) emissions from land use, land use change, and forestry in the tropics. This review identifies a remarkable lack of data on the carbon balance and gas fluxes from undisturbed tropical wetlands, which limits the ability of global c...

متن کامل

CO2 Efflux from Cleared Mangrove Peat

BACKGROUND CO(2) emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. METHODOLOGY/PRINCIPAL FINDINGS We measured CO(2) efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to ...

متن کامل

Can Organic Materials Reduce Excess Nutrient Leaching from Manure-Rich Paddock Soils?

Horse paddocks have been identified as a significant contributor of animal waste nutrients to natural waters; thus, modified paddock management is needed. Because chemical amendments pose a health risk to horses, an alternative for reducing nutrient translocation from manure is to add available organic residues to the soil. To examine the feasibility of outdoor use of organic materials to reduc...

متن کامل

Temperature and microbial activity effects on trace element leaching from metalliferous peats.

Due to geochemical processes, peat soils often have elevated concentrations of trace elements, which are gradually released following drainage for agriculture. Our objectives were to use incubation temperatures to vary microbial activity in two metalliferous peats (M7 acidic peat and M3 neutral peat) from the Elba, New York region, and to use periodic leaching to assess the extent of trace elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016